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In this paper, computational methods to test the reachability and stabilizability
of a system over a (polynomial) ring are derived. For a system X = (A, B) both
reachability and stabilizability can be restated as right-invertibility conditions on
the matrix (zI — A | B) over different rings. After the introduction of a polyno-
mial ideal Z related to the system, both properties can be studied simultaneously.
We derive methods to compute a Grobner basis of the ideal Z and also charac-
terize its variety. In this way we obtain algorithms to verify the reachability of a
system over a polynomial ring. The corresponding stabilizability tests are mainly
derived for the particular application of time-delay systems with point delays.

1. INTRODUCTION

Systems over (polynomial) rings can be seen as a rather straightforward general-
ization of systems over the field of real numbers. The key-idea of this approach
is the observation that a linear time-invariant finite-dimensional system over
R in state-space form, described by

{;t(t) = Axz(t) + Bu(t),
y(t) = Cz(t) + Du(t),

(1)

is completely characterized by the four real matrices A, B, C, and D. Moreover,
intrinsic properties of the system can be translated into properties of the four
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system defining matrices, and also most design techniques may be carried out,
using the quadruple (A, B, C, D) only. Apparently, the quadruple (A4, B,C, D)
determines the (algebraic) structure of system (1) completely, and in this way,
an alternative way of studying the system equations (1) is obtained: one may
study quadruples of real matrices of appropriate dimensions instead.

From an algebraic point of view, the restriction that A, B, C, and D are
real matrices is not necessary. One may also consider quadruples of matrices,
whose entries are elements of a ring. In this setting, algebraic operations,
like matrix addition and multiplication, are still defined. This motivates the
following definition of a system over a ring.

DEFINITION 1.1. ([11]) A (free) linear system ¥ over a commutative ring R is
a quadruple of matrices (A, B,C, D), where A € R™"*™ B € R™*™ C € RP*",
and D € RP*™ for some integers n, m, and p. O

At first sight it seems strange that in Definition 1.1 no dynamics are in-
volved. However, this is precisely the advantage of this rather general frame-
work: it may be specialized to a lot of interesting situations. A straightforward
example are discrete-time systems over a commutative ring R. In this case,
the input u, state z, and output y are elements of the R-modules R™, R", and
RP, respectively. Also time-delay systems with point delays may be modeled
as a system over a polynomial ring.

EXAMPLE 1.2. Consider a time-delay system (in continuous time) with k in-
commensurable point delays 7, ..., 7 and define o1, ..., 0 as the correspond-
ing delay operators:

ox(t) =zt —11), ou(t) =u(t — ), (i=1,...,k).

A time-delay system with point delays can then be written as

I(t) = A(Ula"'ao-k)m(t) +B(O’1,...,O'k)u(t), (2)
y(t) = Cl(o1,...,08)z(t) + D(oy,...,08)u(t),
where A(o1,...,0k), B(o1,...,0%), C(o1,...,0%) and D(oy,...,0}) are poly-
nomial matrices in the delay operators o1, ..., 0. Substituting the indetermi-
nates si,...,s; for o1, ..., 0k, a quadruple of polynomial matrices (4, B,C, D)
in the indeterminates si,..., s is obtained. Together with the k-tuple of time-
delays 71, ..., Ty, this quadruple is a complete description of the original system

equations. The quadruple (fi, B, C’, ﬁ) itself can be regarded as a system over
the polynomial ring R[s1, ..., sk].

The previous examples indicate that a large class of systems fits into the
algebraic framework of Definition 1.1. The idea behind this approach is to use
the abstract Definition 1.1 to develop a (formal) theory for systems over rings.
For this, our intuitive notion what a dynamical system is, remains of utmost
importance. An other goal is to generalize design methods, known for systems
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over fields, to the ring case. Since most design techniques are based on matrix
calculations on the quadruple (A, B,C, D), it may be possible to carry out the
same operations in the ring case. The advantage of this approach is clear: once
a problem has been solved in the abstract algebraic framework, this result can
be applied to all types of systems, that can be modeled as a system over a ring.

In this paper we focus on the properties of reachability and stabilizability.
First the definitions of these concepts are generalized to the case of systems over
rings. In general, the conditions for reachability and stabilizability are difficult
to check. However, for systems over polynomial rings, this problem can be
solved using methods from constructive commutative algebra. We show how
reachability and stabilizability can be translated into properties of a polynomial
ideal, and how Grobner basis techniques can be used to test these conditions
explicitly.

2. REACHABILITY AND STABILIZABILITY

Let R be an integral domain, and let A € R™*™ and B € R"*™. Then the
pair! ¥ = (4, B) is called reachable if the columns of the matrix (B | AB |
--- | A" 1 B) span the free module R™. This generalization of the Kalman rank
condition to the ring case coincides with the intuitive notion of reachability for
discrete-time systems over rings. The condition can also be formulated as a
generalized Hautus test (see [10] or [7, p. 19]):

PROPOSITION 2.1. Let ¥ = (A, B) be a system over R. Then (A, B) is reach-
able if and only if

(21 — A | B) is right-invertible over R|z]. (3)
O

In the algebraic framework, the notion of stability is somewhat more diffi-
cult to describe because the concepts of state and convergence cannot be used
explicitly. This problem can be solved by the introduction of so-called Hurwitz
sets (see also [3], [9]).

DEFINITION 2.2. A Hurwitz set D is a subset of the polynomial ring R[z],
satisfying the following properties:

(i) D is multiplicative, i.e. 1 € D, and if p,q € D, then p-q € D.

(i) Each polynomial p € D is monic, i.e. its leading coefficient is equal to 1.
(ii) D is saturated, i.e. if p € D, and ¢ is monic and divides p, then g € D.

1 For the properties of reachability and stabilizability of a system, only the matrices A and

B are involved; we may assume that C' = I and D = 0. Therefore, in the rest of this paper,
the matrices C' and D are omitted.
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(iv) There exists an a € R such that (z —«) € D.

O

One can think of a Hurwitz set as the set of all stable polynomials. For
example, for linear time-invariant finite-dimensional continuous-time systems,
the set

D ={p(z) e R[z] | ¥A € CT: p(3) £ 0}

is the Hurwitz set describing the classical notion of stability. Accordingly, a
system ¥ = (A, B, C, D) over the ring R is called internally stable with respect
to a Hurwitz set D, if the characteristic polynomial of the system is a stable
polynomial, i.e. if det(z] — A) € D.

With a Hurwitz set D we may associate a ring of fractions, denoted by

Rp(z):

Rop(z) = {% € R(z) | p(z) € R[z] and ¢(2) € D} . (4)
Rp(z) is considered as the set of all (not necessarily proper) stable transfer
functions. With this ring Rp(z) in mind, it is possible to generalize the Hautus
test for stabilizability to the ring case. However, in this situation dynamic
state feedback is required to achieve stability. This means that a system I' =
(F,G,H,J) over the ring R, i.e. a system of the same type as X, is used as a
compensator to stabilize X.

ProposITION 2.3. ([4], [10]) Let ¥ = (A, B) be a system over R. Then (A, B)
1s internally stabilizable with respect to the Hurwitz set D using dynamic state

feedback if and only if
(zI — A| B) is right-invertible over Rp(z). (5)
O

Comparing (3) and (5), we see that both reachability and stabilizability are
characterized by a right-invertibility condition on the matrix (27 — A | B), but
over different rings. This motivates a unified approach to study the reachability
and stabilizability of a system simultaneously.

3. TRANSLATION TO POLYNOMIAL IDEALS
Right-invertibility properties of the matrix (zI — A | B) can be reformulated
in terms of a polynomial ideal related to the system ¥ = (A4, B).

DEFINITION 3.1. Let ¥ = (A, B) be a system over an integral domain R. Then
the ideal 7 in R]z] associated with ¥ is defined as

T = {p(z) € Rlz] | IM(z) € R[2]"+™*™ such that (6)
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(21 —A|B)-M(z) =p(z)-I}.
O

To some extent, Z can be seen as the ideal describing all internal dynamics
that can be obtained from the system ¥ = (A, B) by dynamic state feedback:
if ¢(2) is a monic polynomial in Z, then there exists a dynamic state feedback
such that (¢(z))™ is the characteristic polynomial of the closed-loop system.
The reachability and stabilizability conditions for a system ¥ are easily restated
as conditions on the associated ideal 7.

THEOREM 3.2. Let ¥ = (A, B) be a system over an integral domain R, and
let T be the ideal associated with ¥ as defined in (6). Then

(i) £ = (A, B) is reachable <= T = R][z].
(1) ¥ = (A, B) is stabilizable with respect to the Hurwitz set D <= IND # (.

a

To test the reachability and stabilizability of a system, we have to find a
characterization of the ideal Z. For systems over polynomial rings, this can
be done using Grobner basis techniques (see e.g. [2]). Let K be a field of
characteristic zero. In the rest of this paper we assume that R is a polynomial
ring over K in k indeterminates: R = K[sqy,..., sg].

In its present form, the definition of the ideal 7 is not very suitable for
Grobner basis computations. Therefore we introduce two other ideals, strongly
related to Z, that facilitate the application of the Grobner basis algorithm.

DEFINITION 3.3. Let ¥ = (4, B) be a system over R, and denote by e; the ith
unit vector in R™ (i = 1,...,n). Then the ideals H; and H in R[z] associated
with 3 are defined as

H: = {p(z) € Rlz] | I(2) € R[z]*™ such that

(zI — A| B)-4(2) = p(2) - e}, (7)

H = (n]H (8)

=1

a

The ideal H can be considered as an alternative column-wise definition of
7; it is easily seen that H = 7.

DEFINITION 3.4. Let ¥ = (A, B) be a system over R, and let r1(2),...,ry(2)
denote all n x n minors of the matrix (2] — A | B). Then the ideal J associated
with ¥ is defined as the ideal in R[z] generated by all these n X n minors:
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J = (r1(2),...,75(2))r[2- (9)
O

The next lemma describes the relationship between the ideals 7 and 7, and
their varieties.

LEMMA 3.5. Let ¥ = (A, B) be a system over R, and let T and J be the ideals
associated with ¥ as defined in (6) and (9), respectively. Then

(i) J CZ Crad(J) (where rad(J) denotes the radical of J ),
(1) V(Z)=V(J).

ProoF

(i) >J C I” Let r(z) be one of the n x n minors of (21 — A | B). Then there
exists an n X n sub-matrix K(z) of (21 — A | B) such that 7(z) = det(K(z)),
and according to Cramer’s rule we have

K(z) adj(K(z)) = det(K(2))- I =r(2)- 1.

Extending the matrix adj(K(z)) with zero rows on the right places, we obtain
an (n4m) x n matrix K(z) over R[z] such that (2] — A | B) - K(z) = r(2) - I.
Hence r(z) € Z. Since r(z) was an arbitrary n X n minor of (2 — A | B), it
follows that all principal minors of (2I — A | B) belong to Z, so J C Z.

"7 C rad(J)” Let ¢(z) € Z. Then there exists a matrix M(z) € R[z]("T™)xn
such that

(21 —A|B)-M(z) =¢(z)-I. (10)

Let 71(2),...,7n(2) denote all n X n minors of the matrix (21 — A | B). Taking
determinants on both right- and left-hand side of (10), and using the Binet-
Cauchy formula, we find polynomials 3;(z),. .., By (z) € R[z] (the n X n minors
of the matrix M (z)) such that

N
S ri(2)Bi(z) = (pl(2)"

i=1

We conclude that (¢(2))™ € J, and thus by definition ¢(z) € rad(J).
(#1) Since V(J) = V(rad(J)), (ii) follows directly from (i).

Summarizing, we have the following relationships between the ideals 7, H,
and J, and their varieties:

(i) J CI="H,
(i) V(J) = V(I) = V(H).
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Although the ideal [J is not exactly the same as Z, it has an important
advantage: J is easily characterized using Grébner basis methods. One just has
to apply Buchberger’s algorithm (see e.g. [1], [2]) to the minors r1(2),...,rN(2)
to obtain a Grébner basis of J. For the ideals H; (¢ = 1,...,n), Grobuner basis
computations are more involved, but still possible due to the following lemma:

LeMMA 3.6. ([7, p. 171]) Let ¥ = (A, B) be a system over R. Introduce an
n-rowvector g = (q1 - - - qn) of new indeterminates and define

(P1- Prm) = (q1---qn) - (zI — A| B).

Consider p1,...,Pn+m as polynomials in R[z,q,...,q,] and define for i =
1,...,n the ideals P; := (p1,...,Pn+m) N R[z,¢i]. Then

Vie{l..n}:  Hi={p(z) € Rl |- 0(z) € P} (11)
O

Using formula (11), a Grobner basis for H; can be obtained. First a Grobner
basis of P; has to be computed, using a specific term ordering that enables
one to eliminate the additional indeterminates ¢1,...,¢;—1,¢it+1,-.-,qn. Then
the ideal H; is generated by the polynomials ¢(z) € R[z], for which ¢; - ¢(2)
belongs to the Grébner basis of P;. Finally, the computation of the ideal H can
be carried out by intersecting all ideals H; (i = 1,...,n). This is a standard
procedure in the theory of Grébner bases (see e.g. [2, p. 187]).

4. TESTING REACHABILITY
Given a system ¥ = (A, B), we recall from Theorem 3.2 (i) that ¥ is reachable if
and only if 7 = R|[z]. According to the Hilbert Nullstellensatz this is equivalent
to the condition that V(Z) = (). To test this condition, we can use the ideals
‘H and J instead, because these ideals have the same variety as Z. Using the
methods of the previous section, we can compute a Grobner basis of the ideals
J and ‘H. The system ¥ = (A, B) is reachable if and only if these Grobner
bases contain a nonzero constant polynomial (i.e. a nonzero element of the
field K).

If one is only interested in the reachability of a system, the verification
method based on the ideal H can be modified to obtain a more efficient algo-
rithm.

PROPOSITION 4.1. ([7, p. 178]) Let ¥ = (A, B) be a system over R. Introduce
an n-rowvector q¢* = (q1 -+ - qn) of new indeterminates and define

(pl "'pn+m) = (lh qn) . (ZI— A | B)
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Consider p1,...,Dntm as polynomials in R[z,q1,...,qs]. Then

(21 — A | B) is right-invertible over R][z],

The reduced Grébner basis of the ideal (p1,...,Pntm) in

R[Zaqlv"'vqn] 18 G = {qla"'vqn}a
independent of the chosen term ordering.

O

So, to test the right-invertibility of (zI — A | B), only one Grobner basis
has to be computed. Recall that in the original method based on the ideal
H, at least n Grobner bases have to be computed, since for every ideal H;
(t=1,...,n) a Grobner basis has to be determined.

The reachability test described in Proposition 4.1 also has an other advan-
tage: it can be used for the computation of a right-inverse of (2 — A | B) over

R[z].

PROPOSITION 4.2. Let ¥ = (A, B) be a system over R, and q* = (q1 --+¢,) be

an n-rowvector of new indeterminates. Let M(z,qi,...,qs) be an (n+m) X n
matriz over R[z,q1,...,qn] such that
(QI Qn) ’ (ZI_A | B) 'M(Zaq17---7Qn) = (QI Qn) (12)

Then the matriz My(z) € R[z]("+m)><", obtained after substitution of g = qo =
co=gqn=01dn M(z,q1,...,4n), is a right-inverse of (zI — A | B) over R][z].

PRrooF
Assume that (12) holds, and introduce a new indeterminate A. Then (12)
remains valid when (q1,...,q¢n) is replaced by (Agi, ..., Agn):

(Aqu---Agn) - (zI = A| B) - M(z,Aq1, ..., Aqn) = (A1 - - Adn).

Subtracting (Agi - - - Agn) on both left- and right-hand side, and factorizing the
common term A, we obtain

A(qrqn) - ((z2I —A|B)-M(z,Aq1,...,A¢n) — I) =0. (13)

(13) can be considered as a polynomial rowvector in the indeterminate A. All
entries of this vector are zero, so, in particular, the linear terms are zero. The
coefficients of the linear terms in A are obtained by substitution of A = 0 in
(q1--qn)-((z2I —A| B)YM(z,Aq1,...,Aqn) — I). This implies that (g1 - - ¢n) -
((zI —A| B)My(z) —I) = 0. Since (q1 - - - ¢n) is a vector of indeterminates, we
conclude that (2 — A | B)My(z) — I = 0.

O
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If Proposition 4.1 is used to test the right-invertibility of (2 — A | B),
a reduced Grobner basis G of the ideal (p1,...,Pntm) has to be computed.
Buchberger’s algorithm (see [1], [2]) does not only yield a Grdbner basis of
this ideal, but also the polynomial coefficients, describing the relationship be-
tween the polynomials p1, ..., Pri+m, and the polynomials in the Grobner basis
G. It G = {q,...,qn} this implies that also a matrix M(z,q1,...,qn) €
Rz, q1,- .-, qn])"t™*" is obtained, such that (12) holds. Then Proposition
4.2 can be applied to obtain a right-inverse of (21 — A | B) over R[z]. This
result is very interesting from the control point of view, since a right-inverse
of (z2I — A | B) is required in the constructive solution of several important
control problems.

5. TESTING STABILIZABILITY

According to Theorem 3.2 (71), a system ¥ = (A, B) is stabilizable with respect
to the Hurwitz set D if and only if ZND # (). In general it is difficult to verify
this condition. Although a characterization of the ideal Z can be obtained using
Grobner bases, the Hurwitz set D remains a complicated object: it is only a
multiplicative set. Therefore it is difficult to solve the stabilizability question
in full generality.

In a lot of interesting cases the Hurwitz set D has a special structure, and
stabilizability can be translated into a condition on the variety V(Z) of the
ideal Z. For example, consider a time-delay system with k incommensurable
time-delays 71, ..., Tk, as described in Example 1.2. Define the set W C CcHt
as

w={0e e aeCT} (14)

Then the Hurwitz set D, describing the classical notion of stability for time-
delay systems of the form (2), is given by

D = {p(z,s1,...,8:) € Rlz,s1,...,8] | pis monicin z

and V o € W : p(a) # 0}. (15)

So W is the set of points in which a stable polynomial is not allowed to have
ZETOoS.

In the next theorem we reformulate an earlier result from [5] within our
algebraic framework.

THEOREM 5.1. ([5]) Let ¥ = (A, B) be a time-delay system with k incom-
mensurable time-delays T ,...,T,, modeled as a system over the ring R =
R[s1,...,sk]. Let T be the ideal associated with . as described in (6), and
define W and D as in (14) and (15), respectively. Then X is stabilizable by
dynamic state feedback if and only if

VI NW = Q. (16)

a
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In the original paper of Emre and Knowles ([5]), condition (16) was given
in the form of a generalized Hautus test:

YA€ Cc*. rank(A — A(e™ ™, ..., e ™M) | Be ™, ... e ) = n.

However, condition (16) is more appropriate for algorithmic verification. First,
the variety V(Z) can be computed using Grobuner basis techniques. Also the
ideal J can be used for this purpose. This is advantageous from the computa-
tional point of view, because a Grébner basis of this ideal is easier to compute
in general. If V(7) is zero-dimensional, the test is rather simple: one has to
verify whether a finite number of points (i.e. all points of V(Z), calculated using
the Grobner basis algorithm), are elements of W. However, this stabilizability
test remains troublesome for higher-dimensional varieties.

In [8], the generic dimension of the variety V(Z) (in the algebraic geometric
setting, using the Zariski topology) was studied. If R = Rlsq,...,s;] and
A € R™™and B € R™ ™, it turns out that V(Z) is generically empty if & < m.
Furthermore, if k¥ > m, the generic dimension of V(Z) is k — m. In particular
this implies that for systems with commensurable time-delays (k = 1) we may
expect the variety V(Z) to be empty if m > 2, and zero-dimensional if m = 1.

Although the question of stabilizability for time-delay systems may be trans-
formed into a condition on the variety V(Z), the construction of a stabilizing
compensator remains a difficult problem. For this a polynomial p € ZN7D is
required. The condition V(Z) N W = ()) guarantees the existence of a stable
polynomial in Z, but does not yield a constructive method for the computation
of a polynomial p € ZND.

6. CONCLUSION

In this paper a unified approach to test the reachability and stabilizability
of systems over (polynomial) rings was proposed. The main idea is the in-
troduction of an ideal 7, describing the set of internal dynamics obtainable
from the original system by applying dynamic state feedback. The ideal Z can
be approximated by other ideals, that may be computed using Grébner basis
methods. In this way, also the variety V(Z) of the ideal 7 is obtained. Based
on the outcome of these calculations, the reachability and stabilizability of a
system can be verified.
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